<object id="ew2uq"><wbr id="ew2uq"></wbr></object>
<object id="ew2uq"><option id="ew2uq"></option></object>
<sup id="ew2uq"></sup><sup id="ew2uq"><wbr id="ew2uq"></wbr></sup><sup id="ew2uq"><noscript id="ew2uq"></noscript></sup>
<object id="ew2uq"></object><sup id="ew2uq"></sup>
<sup id="ew2uq"><wbr id="ew2uq"></wbr></sup><object id="ew2uq"><noscript id="ew2uq"></noscript></object>
<object id="ew2uq"></object>
<sup id="ew2uq"><wbr id="ew2uq"></wbr></sup><object id="ew2uq"></object>

當前位置:首頁(yè)  >  技術(shù)文章  >  鋰離子電池正負極漿料的測定

鋰離子電池正負極漿料的測定

更新時(shí)間:2022-09-27      點(diǎn)擊次數:3031

鋰離子電池是以含鋰物質(zhì)作負極的化學(xué)電源總稱(chēng)。自1990年日本Nagoura等人研制成以石油焦為負極,以LiCoO2為正極的鋰離子電池以來(lái),日本一直站在鋰離子電池開(kāi)發(fā)和工業(yè)生產(chǎn)技術(shù)的前列。進(jìn)入二十一世紀,在國家政策的鼓勵和市場(chǎng)預期的推動(dòng)下,中國新能源產(chǎn)業(yè)發(fā)展熱度不斷高漲,國內汽車(chē)廠(chǎng)商紛紛推出發(fā)展計劃。而中國新能源汽車(chē)產(chǎn)業(yè)體系也已基本形成。電池漿料的精密調理是提高電池綜合性能的關(guān)鍵;但國外企業(yè)不僅可以對正負極材料的形貌進(jìn)行控制,而且對鋰離子電池漿料質(zhì)控參數秘而不宣。對國內企業(yè)如何發(fā)展自己的核心技術(shù)成為挑戰

對于合漿工序而言,合漿的攪拌工藝、粘結劑、固含量和漿料粘度對漿料的穩定性有重大的意義。通過(guò)高粘度攪拌工藝,漿料中導電劑是否能較好地分散在主料的表面,均勻地包覆住主料,這將影響極片的導電性,直接影響電池的倍率性能。因此,我國鋰離子電池行業(yè)只能通過(guò)測粘度對漿料穩定性進(jìn)行粗放的宏觀(guān)管理,而缺乏對漿料本身電學(xué)質(zhì)的研究和監測,極大地影響了鋰離子電池的成品率,導致成本無(wú)法下降,品質(zhì)無(wú)法提高。我國涉及電池材料的國家標準(GB/T 30835-2014、 GB/T 30836-2014 和GB/T 24533-2009)規定采用激光粒度分析儀進(jìn)行測定,但是根據修正后的國家標準GB/T 19077 -2016,激光粒度儀只適合于球形電池原料的檢測,測試體系為透光的懸浮液,一般顆粒濃度極低(小于0.1%),以避免多重散射造成的誤差。而像電池漿料這種高濃度不透光的黑色粘稠懸浮液已經(jīng)超出了激光粒度儀的應用范圍。美國日本鋰電企業(yè)都是通過(guò)超聲衰減/電聲學(xué)技術(shù)(ISO 20998/ISO13099)表征漿料中顆粒的大小、流變性質(zhì)和電學(xué)性能,進(jìn)行鋰離子電池漿料及其穩定性質(zhì)控。在可比較的范圍內,超聲衰減法和激光衍射法測得的顆粒粒度是一致的(1)。為了打破界限,提高我國鋰離子電池生產(chǎn)品質(zhì),根據所掌握的信息,我們對電池漿料品質(zhì)控制的超聲/電聲學(xué)參數進(jìn)行了初步探索。


鋰離子電池正負極漿料的測定

一、 電極的材料組成

電極配料過(guò)程實(shí)際上是將漿料中的各種組成按標準比例混合在一起(見(jiàn)表1),調制成漿料,以利于均勻涂布,極片的一致性,配料大致包括五個(gè)過(guò)程,原料的預處理,混料,浸濕,分散和絮凝。

料的理化性能如下:

(1) 導電劑非極性物質(zhì),葡萄鏈狀物,含水量3-6%,粒徑一般為 2-5μm;主要有普通碳黑、超導碳黑、石墨乳等,在大批量應用時(shí)一般選擇超導碳黑和石墨乳復配;通常為中性。





(2) PVDF粘合劑: 聚偏氟乙烯,非極性物質(zhì),鏈狀物,分子量從300,000到3,000,000不等;吸水后分子量下降,粘性變差。

(3) NMP: N-甲基吡咯烷酮,弱極性液體,用來(lái)溶解/溶脹PVDF,同時(shí)用來(lái)稀釋漿料。

性能的鋰離子電池離不開(kāi)的生產(chǎn)工藝與生產(chǎn)制造設備,其中電池漿料的配方和電池漿料的均勻分散是生產(chǎn)優(yōu)良鋰離子電池的關(guān)鍵。如何發(fā)現和測定電池漿料的電學(xué)性能及其與電池充放電性能的關(guān)系,如何判斷和監測分散過(guò)程及分散程度就成為至關(guān)重要的質(zhì)控環(huán)節。


表1 電極的漿料組成成分及作用

電極組成

正極材料

負極材料

主料

鋰鹽(如鈷酸鋰):為電池提供鋰源。

石墨構成負極反應的主要物質(zhì)。

導電劑

提高正極片的導電性,補償正極活性物質(zhì)的電子導電性;增加反應界面,減少極化。

提高負極片的導電性,補償負極活性物質(zhì)的電子導電性;提高反應深度及利用率;防止枝晶的產(chǎn)生;提高反應界面,減少極化。

粘合劑

PVDF將鈷酸鋰、導電劑和鋁箔或鋁網(wǎng)粘合在一起。

水性粘合劑將石墨、導電劑、添加劑和銅箔或銅網(wǎng)粘合在一起。

添加劑


降低不可逆反應,提高粘附力;提高漿料黏度,防止漿料沉淀。


目前,國內對鋰離子電池漿料的電學(xué)性能及其與電池的倍率性能的關(guān)系研究幾近,為此我們展開(kāi)了相關(guān)研究。電極漿料來(lái)自國內外相關(guān)的。

二、 實(shí)驗儀器和測定參數:

我們采用美國分散技術(shù)公司(Dispersion Technology,IncDT-1202 超聲粒度和zeta電位分析儀進(jìn)行測定(見(jiàn)圖1。該儀器實(shí)際是一臺高度集成的超聲/電聲譜分析儀,不僅可以測定原濃體系黑色漿料的粒度分布和zeta電位(粒度范圍:5nm~1mm,體積濃度可達50%),適應高粘度樣品的測定(可20,000 cP),而且一臺儀器上完成pH、溫度、電導率及流變性質(zhì)測定。該儀器同時(shí)執行ISO 20998/ ISO13099標準,利用學(xué)和聲學(xué)法,可以在分散液、微乳液、具有液體分散介質(zhì)的多孔材料等多相體系中測定Zeta電位。對Zeta電位值分散相質(zhì)量分數包括稀釋和濃縮體系)沒(méi)有限定,顆粒粒徑和孔徑大小可以在微米量級納米范圍,對顆?;蚩紫?/span>幾何形狀也沒(méi)有特殊的限制。液體分散介質(zhì)可以是水或者非水相,可具有任意的液體電導率、介電常數化學(xué)成分。顆粒自身導電也可以不導電,膠體雙電層可以分離也可以互相重疊,雙電層厚或其它性質(zhì)沒(méi)有限制。因此,對于電池漿料具有廣泛的適用性。除此之外,我們還關(guān)注和計算了在ISO13099標準中與體系顆粒電學(xué)性質(zhì)相關(guān)以下參數

德拜長(cháng)度表示為1/κ,帶電顆粒的離子分布K2,  

其中ci——離子i的濃度;zi——離子i的化合價(jià),包含正負號;F——法拉第常數。


2. Du:杜坎數(Dukhin number),無(wú)量綱,反映表面電導率電動(dòng)、電聲現象及多相體系電導率和介電常數的貢獻,是雙電層極化狀態(tài)的表面過(guò)剩導電率的表征參數,它描述顆粒的表面電導率和周?chē)黧w的體電導率之間的比率。

其中Kσ——顆粒表面層(面)電導率;Km——液體(體)電導率;a——顆粒半徑。


3. Surface charge:雙電層的面電荷密度。單位面積界面上的電荷,由液體體相離子的特異吸附,或表面基團解離所致。表面電荷密度的單位是C/m (庫侖/米)。


4. MWf,即Maxwell-Wagner弛豫頻率:

膠體分散體系在外加電場(chǎng)作用下,界面雙電層的極化導致在微波和射頻頻率區間產(chǎn)生兩個(gè)明顯的介電弛豫現象——界面極化(Maxwell-Wagner)弛豫和低頻弛豫(LFDD), 的理論和實(shí)驗研究都表明:研究粒子分散系的這兩種弛豫現象能提供十分豐富的關(guān)于體系的非均勻構造信息。MW弛豫頻率計算為下式:

由于Maxwell-wagner效應積累的電荷在電場(chǎng)撤去以后仍有可能存在,遠低于或高于此頻率可忽略雙電層的面電荷密度的變化。


5. Dynamic viscosity:動(dòng)力黏度,即剪切黏度,是剪切力與液體滑移速率的比值。動(dòng)力黏度用來(lái)衡量液體抵抗剪切形變的程度,它決定了不可壓縮牛頓流體的動(dòng)力學(xué)。

6. Bulk viscosity:體積黏度,牛頓液體在體積發(fā)生變化時(shí),所受阻力和體積變化速度關(guān)系的表征。體積黏度反映了流體“旋轉"和“振動(dòng)"自由度的弛豫,對于非牛頓液體,則以縱向黏度表示。體積黏度縱向黏度與動(dòng)力黏度是彼此獨立的兩個(gè)參數,表征的是液體中不同過(guò)程、不同分子運動(dòng)的兩個(gè)層面。

三、 實(shí)驗過(guò)程和結果:

3.1 實(shí)驗裝置和過(guò)程





1. 在主機樣品池中(見(jiàn)圖2左)測量漿料粒度和流變性能;采用帶小型樣品杯的倒置zata(ζ)電位探頭(見(jiàn)圖2,測量ζ電位;用電導率探頭測量電導率;pH和溫度探頭測量體系的pH值溫度(NMP體系輸入pH=14)。

2. 在用膠體振動(dòng)電流 (CVI) 方式測定原濃體系的zeta電位,應用軟件的Analysis項下,輸入電導率值,選擇“Advanced CVI",CVI理論更加地計算ζ電位,以及Debye(德拜長(cháng)度)、Du(杜坎數)等值。


3.2 實(shí)驗結果

實(shí)驗數據綜述見(jiàn)表2。

表2       各種電池正負極漿料的超聲/電聲譜測量結果




測定項目

漿料類(lèi)別

溶劑本底


NMP

正極漿料

負極漿料

漿料組成

60%三元 -NMP

50%石墨 -NMP

40%石墨 -水性

%石墨烯-NMP

40%鈦酸鋰-水性

40%鈦酸鋰-NMP

漿料性質(zhì)

牛頓液體

牛頓液體

牛頓液體

牛頓液體

牛頓液體

牛頓液體

牛頓液體


衰減

峰值粒度(μm)


3.52

5.13

10.95


0.145

1.166

0.915

胡克參數


0.1

0.7



1.3

1.3

微黏度


1.65

0



0.1

0.93

散射系數


5.2

6.8

3.36


0.8

0.8



超聲

流變

動(dòng)力黏度(cP)

1.73

137.37






體積黏度(cP)

5.7

439.62






縱向黏度(cP)@10.3MHz

10.74

2008.51






縱向黏度(cP)@81.0MHz

7.96

504.17






聲速實(shí)驗(m/s)

1544.7

1501.5






彈性模量Mx 109 (Pa)

2.458

4.396






液體壓縮率

X 1010 (1/Pa)

4.068

2.275








學(xué)

Zeta 電位 (mV)

經(jīng)典理論:

3.68

-0.55

-10.35

-4.97

-45.79

-5.37

理論:

12.41

0

-10.36

-105.99

-46.82

-35.51

電導率(S/m)


0.000001

0.000002

0.678

0.000002

0.2674

0.000002

德拜長(cháng)度(nm)


739.8

529.35

1.41

525.8

2.26

536.16

杜坎數


0

0.326

0

0

0

0

表面電荷密度(10-6C/cm2


0.0012

0.00053

0.679

-0.011

1.327

-0.003

每個(gè)顆粒平均電荷(10-6 C /顆粒)


2899.1

0



22.1


498.1

動(dòng)態(tài)遷移率


0.044

0.0021

0.077

0.138

4.549

0.117

MWf(MHz)


1.138

0.0011

155.9

0.0013

61.13

0.0011


國外樣品正極漿料三元系漿料粒度:

國外樣品正極漿料的粒度與我們國內產(chǎn)品類(lèi)似,但其三元系漿料粒度非常小,其粒度分布峰形是峰值在0.05μm,0.2μm和0.628μm三個(gè)峰的疊加,相關(guān)材料的電聲學(xué)信息均未透露。






















圖4  鋰離子電池三元正極漿料粒度分布圖及zeta電位等((左圖)以及流變學(xué)測定(右圖)


我們對某三元漿料進(jìn)行了超聲/電聲譜全分析,其測定結果和數據見(jiàn)圖4和表2,在此測定的基礎上,我們還可以計算漿料微觀(guān)結構的彈性參數——Hook系數、微粘度及散射系數,它們分別為0.1,1.65cP和5.2。



討    論

1. 有關(guān)超聲/電聲譜技術(shù)

聲學(xué)和膠體學(xué)有機結合在電池漿料的應用是未來(lái)電化學(xué)領(lǐng)域的研究熱點(diǎn)之一。歷這兩個(gè)領(lǐng)域的學(xué)者之間交集較少。盡管膠體學(xué)中有 有關(guān)超聲現象的文獻報道,但我們幾乎沒(méi)有意識到這一現象會(huì )對膠體科學(xué)的發(fā)展和應用起到真正重要的作用。從另一方面來(lái)看,膠體科學(xué)工作者也沒(méi)有意識到聲學(xué)會(huì )是進(jìn)行膠體表征的重要工具。其實(shí),在整個(gè)膠體科學(xué)框架中隱藏著(zhù)聲學(xué)部分,關(guān)鍵要看: 1)這些相關(guān)擾動(dòng)本質(zhì)上是電學(xué)的,機械力學(xué)的,還是機電學(xué)的;2)擾動(dòng)時(shí)域是否能用穩態(tài),低頻或高頻來(lái)描述。表3 說(shuō)明了這種主要膠體現象的分類(lèi)情況。根據電學(xué)或機械波長(cháng)λ與膠體粒徑L 之間的關(guān)系來(lái)劃分低頻和高頻的范圍。

表3       膠體現象

膠體現象分類(lèi)

電學(xué)性質(zhì)

機電性質(zhì)

力學(xué)性質(zhì)


穩態(tài)


     電導率,

表面電導率

     電泳、電滲,

     沉降電位、流動(dòng)電位

     電粘度

     粘度,

穩態(tài)膠體動(dòng)力學(xué),

     滲透性,毛細流動(dòng)

低頻 (λ>L)

介電光譜

       電旋轉

介電泳

振動(dòng)流變學(xué)

高頻 (λ<L)

     光散射, X-射線(xiàn)光譜

電聲學(xué)!

聲學(xué)!


對于膠體體系,可用于漿料的超聲技術(shù)會(huì )提供關(guān)于顆粒表征的三個(gè)重要領(lǐng)域的信息: 粒徑分布,流變學(xué)和電動(dòng)學(xué)。聲譜儀能測量超聲波的衰減,聲音的傳播速度和(或)聲阻抗。所檢測到的聲學(xué)性質(zhì)包含了膠體的粒度分布,體積分數以及膠體結構和熱力學(xué)性質(zhì)的信息。所以,我們能通過(guò)運用相應的理論假設和先前的一些參數從中提煉出這些信息。聲譜儀不僅僅是一個(gè)粒度分析的儀器,通過(guò)應用在膠體上的聲波和壓力,我們根據其響應還可以闡釋膠體的流變學(xué)性質(zhì)。除了聲學(xué),還有電聲學(xué),表5和6列出了DT-1202全配置能夠測量和計算的漿料參數,內置計算理論及其適用范圍。


超聲脈沖可以穿透樣品傳播.通過(guò)測量這個(gè)寬頻超聲脈沖的衰減(聲譜),我們可以從中計算出與衰減有函數關(guān)系的粒度分布。軟件可以計算膠體顆粒超聲作用的幾種機制,包括散射、耗散和熱力學(xué)耦合。這些計算需要知道顆粒和液體的密度、液體的粘度、顆粒的重量濃度;對于軟性顆粒,如乳液或乳膠,還需要知道顆粒的熱膨脹系數。這些都可以從軟件已知物數據庫中自動(dòng)獲得。對于顆粒的重量濃度也可以從聲速數據中求得。超聲方法測量粒度分布執行ISO 20998 (GB/T 29023)標準《超聲法顆粒測量與表征》。


1.2 用超聲法測量拉伸流變性質(zhì)原理

分散體系的粘彈性通常用剪切流變儀通過(guò)振動(dòng)測量來(lái)獲得,其頻率范圍的上限大約是1000Hz。而用1~100 MHz頻率內的聲波來(lái)研究分散體系的粘彈性,是對傳統剪切流變技術(shù)的一項補充,其特殊的優(yōu)勢在于對樣品無(wú)機械和結構損傷。此外,還有可能對難表征的參數進(jìn)行表征,如:體積粘度。由此可得自有分子的轉動(dòng)-振動(dòng)角度的新信息。而這是用剪切法不可能做到的??v向粘度一般和非牛頓液體有關(guān),和牛頓液體無(wú)關(guān)。利用超聲流變學(xué)可以得到以下測量數據:

n 表征牛頓液體的動(dòng)粘度(即剪切黏度)。如果知道某一特定溶液的動(dòng)粘度η,那么就可得到體積粘度ηb。

n 通過(guò)測定超聲衰減譜判斷牛頓液體。

n 可以得到分散體系的縱向彈性模數G’long和縱向耗散模數G"long


超聲引起顆粒相對于液體的運動(dòng)。這個(gè)振動(dòng)又侵擾了在帶電顆粒反向離子擴散界面上移動(dòng)的雙電層。這種離子云的位移制造了一個(gè)偶極運動(dòng)。許多顆粒的偶極運動(dòng)之和就是可以用電極傳感器測量的電場(chǎng)。這個(gè)電場(chǎng)依賴(lài)于zeta電位值。用相應的理論就可以計算zeta電位。這個(gè)計算需要知道固體顆粒和液體的密度差、粘度、液體的介電常數以及顆粒的重量濃度(%wt)。通過(guò)電聲方法測量zeta電位執行ISO 13099-1標準《膠體系統 ——ζ電位測定方法 第1部分:電聲法和動(dòng)電法;ISO 13099-3 膠體系統——ζ電位測定方法 第2部分:聲學(xué)法》

在動(dòng)態(tài)光散射zeta電位分析儀中只有經(jīng)典理論。由于在極性水體系中雙電層可能會(huì )變厚,在非水體系中雙電層可能會(huì )重疊,在電聲法zeta電位分析儀中除了經(jīng)典的基礎理論外,還內置兩個(gè)更的CVI膠體理論,并以德拜長(cháng)度1/k與顆粒半徑a的乘積ka作為理論選擇的依據(見(jiàn)表5)。有關(guān)雙電層厚薄的說(shuō)明見(jiàn)圖5。



























由于涉及到其它雙電層參數,高等理論的應用會(huì )更為復雜。但另一方面,這些理論使表面電學(xué)性質(zhì)的描述更為詳細,其中zui重要的兩個(gè)參數是德拜長(cháng)度和杜坎(Dukhin)數。測量過(guò)程的復雜程度增加會(huì )使確定的參數更詳細,從而使得Zeta電位的值更。

德拜長(cháng)度是雙電層厚度的一種估值,對于理解聚集穩定性和粒子間相互作用很重要。杜坎數(Dukhin number,Du)是以美國分散技術(shù)公司(Dispersion Technology Inc)的CEO —— Dr.Andrei Dukhin的父親,前蘇聯(lián)的膠體化學(xué)家斯坦尼斯拉夫·杜坎Stanislav Dukhin命名的無(wú)量綱參數,是雙電層極化狀態(tài)的表面過(guò)剩導電率的表征參數,它描述顆粒的表面電導率和周?chē)黧w的體電導率之間的比率。通過(guò)電導率測量可以計算。可以通過(guò)電導率的測量計算德拜長(cháng)度和杜坎數(如圖6)。

6 超聲衰減機理(五種理論模型)*

理論

衰減類(lèi)型

顆粒屬性

固有吸收


對粗顆粒體系


耗散模型

ECAH (稀釋體系)

PMK顆粒-介質(zhì)耦合模型

粘滯效應

小于4μm的剛性粗顆粒(陶瓷、顏料……)

ECAH (稀釋體系)

PMK顆粒-介質(zhì)耦合模型

熱效應

乳液、乳膠

RBZ模型

結構效應

在有機分散體系中(在高濃度或有粘合物的體系中)

聲散射

ECAH (稀釋體系)

Mose (濃分散體系)

散射損耗

粒徑大于4μm的顆粒

*用于計算的慣用模型由分散質(zhì)的類(lèi)型決定


























1.4 用電震法測量多孔固體的孔隙率和界面zeta電位原理

這是一個(gè)非常前沿的技術(shù)。多孔固體的表征通常包括孔隙率,孔徑和孔壁電荷量??紫堵屎涂讖綔y量一般用氣體吸附法和壓汞法,而電荷量的表征通常依靠表面流動(dòng)電位的測量。超聲在多孔固體中的傳播產(chǎn)生了一組可用于表征目的的不同效應,其中對電震電流的詳細分析得到廣泛認同:在不等容模型下的高頻超聲產(chǎn)生的是簡(jiǎn)單的流動(dòng)電流,這使得該方法可以取代壓汞儀而不用汞。電震法還可以表征具有極低流體動(dòng)力學(xué)滲透率(hydrodynamic permeability)材料的帶電表面性質(zhì)(由于小孔)。許多這類(lèi)材料是不可能用傳統動(dòng)電法測試的。該方法已列入ISO 13099-1標準《膠體系統 ——ζ電位測定方法 第1部分:電聲法和動(dòng)電法》。


2. 鋰離子電池漿料與分散工藝的質(zhì)量控制


鋰離子電池漿料是由多種不同比重、不同粒度的原料組成,又是固-液相混合分散,使用NMP形成的漿料屬于非牛頓流體。這種像油狀的黑色流動(dòng)液體,具有一般流體所具有的特征如粘性、流動(dòng)性等,但因為電池漿料是一種液固兩相流,所以還具有一些自身特殊的性能。


2.1 鋰離子電池漿料流變性:

  流變性是指物質(zhì)在外力作用下的變形和流動(dòng)性質(zhì)。由于液體不能承受剪切力,因而不能保持其外形的穩定。在外力的作用下,液體就會(huì )發(fā)生流動(dòng)和變形等的性質(zhì),稱(chēng)為流變性。漿體的流變性十分復雜。一種漿體在低濃度時(shí)可能表現為牛頓流體或假塑性流體;濃度稍高產(chǎn)生絮團后,可能表現為賓漢流體;更高的濃度下又可能會(huì )出現脹塑性流體。

  對同—種漿料,在剪切率不太高時(shí),不出現脹流現象,剪切率高時(shí)又可能轉化為脹塑性流體。有些非牛頓流體在低剪切速率和高剪切速率下都可能呈現牛頓流體形象,這可能是因為在低剪切速率下,分子的無(wú)規則熱運動(dòng)占優(yōu)勢,體現不出剪切速率對其中物料重新排列使表觀(guān)粘度的變化。當剪切速率增高到一定限度后,剪切定向達到了*程度,因而也使表觀(guān)粘度不隨剪切速率而變。如前所述,許多非牛頓流體其流變特性受到體系中結構變化的影響。

  影響鋰離子電池漿料流變性的一些主要參數:

(1) 分散相或固相的類(lèi)型及表面電荷的大小:對于不同種類(lèi)的正負極活性物質(zhì),由于其種類(lèi)不同,具有不同的水化膨脹特性以及不同的表面電荷,因而不同種類(lèi)的活性物質(zhì)其分散特性、膠溶特性以及形成具有一定強度的結構體系的能力也各不相同,其宏觀(guān)表現是不同種類(lèi)的活性物質(zhì)配制而成的漿料具有不同的流變特性。

(2) 固相的濃度:分散相或固相濃度的大小主要影響漿料的屈服應力和塑性粘度或表觀(guān)粘度。在一般情況下,固相濃度越大,其屈服應力、塑性粘度或表觀(guān)粘度越大。

(3) 固相顆位的大小、形狀以及粒徑的分布:在固相濃度不變的條件下,顆粒的粒徑越小,由于其總的表面積增加,因而漿料的屈服應力和粘度將隨之增加。

(4) 分散介質(zhì)本身的粘度:不同的溶劑具有不同的粘度,使得漿料的粘度也將隨之變化。

(5) 溫度和壓力:在不同的溫度和壓力下漿料具有不同的流變特性。

(6) 漿料的pH值。

DT-1202具有在常壓條件下測量和計算上述全部涉及的宏觀(guān)和微觀(guān)參數的能力,這對研究漿料的配比和工藝至關(guān)重要。同時(shí),顆粒的大小和形狀分布可以由Occhio圖像法粒度和形貌分析儀獲得。


2.2 分散效果對鋰離子電池漿料的影響:

  混合分散工藝在鋰離子電池的整個(gè)生產(chǎn)工藝中對產(chǎn)品的品質(zhì)影響度大于30%,是整個(gè)生產(chǎn)工藝中zui重要的環(huán)節。鋰離子電池的電極制造過(guò)程中,正、負極漿料的制備都包括了液體與液體、液體與固體物料之間的相互混合、溶解、分散等一系列工藝過(guò)程,而且在這個(gè)過(guò)程中都伴隨著(zhù)溫度、粘度、微環(huán)境等的變化。在正、負極漿料中,顆粒狀活性物質(zhì)的分散性和均勻性直接響到鋰離子在電池兩極間的運動(dòng),因此在鋰離子電池生產(chǎn)中各極片材料的漿料的混合分散至關(guān)重要,漿料分散質(zhì)量的好壞,直接影響到后續鋰離子電池生產(chǎn)的質(zhì)量及其產(chǎn)品的性能。

  大部分的漿料都是屬于懸浮液體系。不穩定的懸浮液在靜止狀態(tài)下發(fā)生絮凝,并由于重力作用而很快分層,分散的目的就是要在產(chǎn)品的有效期內抗絮凝、防止分層,維持懸浮顆粒的均勻分布,提高產(chǎn)品的穩定性。而監測漿料穩定性的*手段就是用zeta電位探頭直接定時(shí)(定期)觀(guān)察漿料的平均粒度和zeta電位變化,監測團聚的發(fā)生。

  

 另外,在我們的初步實(shí)驗探索中,石墨烯和鈦酸鋰的NMP漿料電性能表現搶眼,這些參數與材料種類(lèi)、漿料濃度和漿料穩定狀態(tài)之間的關(guān)系需要進(jìn)一步探索。


2.3 電池漿料電學(xué)性能與電池的倍率性能之間的關(guān)系:

美國分散科技公司(DTI)專(zhuān)注于非均相體系表征的科學(xué)儀器業(yè)務(wù),基于超聲法原理的DT-1202主要應用于在原濃的分散體系中表征粒徑分布、zeta電位、流變學(xué)、固體含量、孔隙率,包括CMP漿料,納米分散體,陶瓷漿料,電池漿料,水泥家族,藥物乳劑等,并可應用于多孔固體。電池漿料的性質(zhì)與固相類(lèi)型和濃度、表面電荷大小、粒徑分布和流變性有關(guān),而實(shí)驗表明,有關(guān)這些性質(zhì)的參數可以從DT-1202上一次性測出或計算得到。

DT-1202是分析儀器,因此對于黑色高濃體系的電池漿料的測定,在默認的基礎理論基礎上,需要從分析窗口中選擇CVI理論等重新計算數據,從而獲得可靠的數據。它可以同時(shí)得到體系的動(dòng)力黏度(剪切黏度)和體積黏度,是電池漿料開(kāi)發(fā)研究和質(zhì)量控制的利器。除此之外,本文的初步探索中,還可獲得系列電池漿料的電學(xué)參數,這些參數成品電池的倍率關(guān)系需要通過(guò)進(jìn)一步實(shí)驗摸索和確認。這些實(shí)驗包括:


目前,對于水泥這樣的傳統材料,已經(jīng)采用zeta 電位和雙電層厚度研究和監測水泥分散體系的穩定性、流變性以及水泥的凝結和硬化過(guò)程(4)。我們相信,在上述實(shí)驗的基礎上,一定能發(fā)現和掌握電池漿料等新能源材料質(zhì)控的鑰匙。



—— 2017年6月3日星期六



文獻

1. 專(zhuān)著(zhù):Dukhin, A.S. and Goetz, P.J. “Characterization of liquids, nano- and microparticulates, and porous bodies using ultrasound", Elsevier, 2010

2. 石墨邦:鋰電漿料特性和分散機理的zui強總結。電池中國。2017-03-22 09:30:00  

3. ISO 13099-1標準:《膠體系統 ——ζ電位測定方法 第1部分:電聲法和動(dòng)電法;ISO 13099-3 膠體系統——ζ電位測定方法 第2部分:聲學(xué)法》

4. 劉春雁:水泥分散體系的帶電機理及雙電層厚度的描述.《科海故事博覽·科技探索》 , 2012



地址:北京市昌平區西三旗建材城西路新龍大廈A座2010室

郵箱:cici.ding@insearch-tech.com

傳真:86-10-81706682

  • 微信客服

  • 微信公眾號

版權所有Copyright © 2024 儀思奇(北京)科技發(fā)展有限公司 All Right Reserved    備案號:京ICP備16057128號-2     sitemap.xml     技術(shù)支持:化工儀器網(wǎng)     管理登陸

<object id="ew2uq"><wbr id="ew2uq"></wbr></object>
<object id="ew2uq"><option id="ew2uq"></option></object>
<sup id="ew2uq"></sup><sup id="ew2uq"><wbr id="ew2uq"></wbr></sup><sup id="ew2uq"><noscript id="ew2uq"></noscript></sup>
<object id="ew2uq"></object><sup id="ew2uq"></sup>
<sup id="ew2uq"><wbr id="ew2uq"></wbr></sup><object id="ew2uq"><noscript id="ew2uq"></noscript></object>
<object id="ew2uq"></object>
<sup id="ew2uq"><wbr id="ew2uq"></wbr></sup><object id="ew2uq"></object>
长寿区| 温州市| 大埔区| 景德镇市| 德庆县| 安达市| 和顺县| 邓州市| 绥滨县| 含山县| 伊金霍洛旗| 灵璧县| 独山县| 都安| 利辛县| 廉江市| 岚皋县| 体育| 芜湖县| 琼结县| 阿尔山市| 涡阳县| 鲁山县| 玉林市| 兰坪| 浦东新区| 永德县| 舟曲县| 开封市| 英德市| 宜章县| 甘南县| 从江县| 日土县| 安吉县| 滁州市| 安塞县| 秀山| 乌兰察布市| 阿拉尔市| 鄯善县| http://444 http://444 http://444 http://444 http://444 http://444